ORBIT OF QUADRATIC IRRATIONALS MODULO P BY THE MODULAR GROUP

Shin-Ichi Katayama¹, Toru Nakahara², Syed Inayat Ali Shah³, Mohammad Naeem Khalid³ and Sareer Badshah³
¹Tokushima University, Japan.
²Saga University, Japan.
³Islamia College University, Peshawar (N.W.F.P) Pakistan.

ABSTRACT
Let p be an odd prime number, and \(\alpha \) be a solution of an irreducible quadratic equation \(x^2 + ax + b = 0 \) over the rationals \(\mathbb{Q} \). In Mushtaq study, the behavior of orbits of a quadratic irrational in a quadratic field \(\mathbb{Q}(\alpha) \) by the special linear transformation group \(\text{SL}(2, \mathbb{Z}) \) modulo \(\begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} \) is investigated, where; \(\mathbb{Z} \) denotes the ring of rational integers (Mushtaq, 1988). In this study, the above group is denoted by \(\text{PSL}(2, \mathbb{Z}) \), presented as the projective special linear transformation group. Let \(\alpha \) be a root of quadratic equation \(x^2 - x - 1 \equiv 0 \pmod{p} \), then we shall introduce the orbit of the (irrational) element \(\alpha \) in a finite field \(\mathbb{F}_p(\alpha) \) by \(\text{PSL}(2, \mathbb{F}_p) \), where \(\mathbb{F}_p \) equal to \(\mathbb{Z}/p\mathbb{Z} \).

INTRODUCTION
Let p be an odd prime number and \(\mathbb{F}_p \) be the finite field of p elements \(\{0, 1, \cdots, p-1\} \). In this case, an element \(j \) in the field \(\mathbb{F}_p \) and the representative number \(j(0 \leq j \leq p-1) \) in a class \(\{a \in \mathbb{Z}; a \equiv j \pmod{p}\} \) in the residue class field \(\mathbb{Z}/p\mathbb{Z} \) modulo \(p \), where \(\mathbb{Z} \) denotes the ring of rational integers. \(\mathbb{Q}(\sqrt{\mathbb{d}}) \) be a real quadratic number field over the rationals \(\mathbb{Q} \) with non-square integer \(\mathbb{d} \geq 2 \).

In this article, we investigate an analogue in the quadratic extension of the finite field \(\mathbb{F}_p \) to a result on the orbits of quadratic irrationals in a global field \(\mathbb{Q}(\sqrt{\mathbb{d}}) \) (Mushtaq, 1988).

Mushtaq (1988) showed Fig. modulo 13, where the diagram is one orbit of length 13 in the disjoint orbit decomposition for the quadratic extension \(\mathbb{F}_{13}(\alpha) \) over the prime field \(\mathbb{F}_{13} \) acting on the modular field \(\text{SL}(2, \mathbb{F}_{13}) \). The present study presents another orbit of length 156 given in theorem 2.

In the figure below, two points 5, 8 are fixed by \(X \), and two points 4,10 by \(Y \) in \(\text{SL}(2, \mathbb{F}_{13}) \), where \(X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \) and \(Y = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \).

To classify the finite field \(\mathbb{F}_p(\alpha) \) according to the number of orbits in the field, where \(\alpha \) is a root of a quadratic equation \(x^2 + ax + b = 0 \); this study uses Quadratic Reciprocity Law to deal with the above mentioned problem.
RESULTS AND DISCUSSION

Two cases of odd prime numbers were considered, the details of as follows:

Case No. 1: \(p \equiv 1, 4 \pmod{5} \).

Let \(D \) be the discriminant of the quadratic equation \(f(x) = x^2 - x - 1 = 0 \). Using the first supplementary and quadratic reciprocity law, we have

\[
\left(\frac{D}{p} \right) = \left(\frac{5}{p} \right) = \left(\frac{\pm 1}{5} \right) = 1.
\]

The equation \(f(x) = 0 \) is decomposed in the linear factors in \(F_p \)

\[
f(x) = (x - a)(x - \bar{a}),
\]

where

\[
a = \frac{1 + \sqrt{D}}{2} = \frac{1 + c}{2},
\]

\[
\bar{a} = \frac{1 - c}{2}.
\]

The field \(F_p(\alpha) = s\alpha + t; s, t \in F_p \) coincides with \(F_p \), namely in the case of \(p \equiv 1, 4 \pmod{5} \), and the field extension \(F_p(\alpha) \) over \(F_p \) does not occur.

Let \(F_p^* \) be the multiplicative group in \(F_p \), the special linear transformation group \(SL(2, F_p) \), is generated by

\[
X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}
\]

modulo \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \) in Mushtaq (1988).

Using the two equations

\[
X \begin{pmatrix} \omega \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \omega \\ 1 \end{pmatrix} \quad \text{and} \quad Y \begin{pmatrix} \omega \\ 1 \end{pmatrix} = \begin{pmatrix} \omega - 1 \\ \omega \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \omega \\ 1 \end{pmatrix}
\]

for \(\omega \in \mathbb{Q}(\alpha) \), we identify a vector \(\begin{pmatrix} \beta \\ \gamma \end{pmatrix} \) and the ratio \(\frac{\beta}{\gamma} \) for elements \(\beta, \gamma \in F_p(\alpha) \).

Hence \(S(\beta) \) means \(S \begin{pmatrix} \beta \\ 1 \end{pmatrix} \) for any transformation \(S \in SL(2, F_p) \). Then

\[
X^2(\omega) = X \begin{pmatrix} -1 \\ \omega \end{pmatrix} = \omega,
\]

By

\[
Y^2(\omega) = Y \begin{pmatrix} \omega - 1 \\ \omega \end{pmatrix} = \begin{pmatrix} -1 \\ \omega - 1 \end{pmatrix}
\]

and

\[
Y^3(\omega) = Y \begin{pmatrix} -1 \\ \omega - 1 \end{pmatrix} = \omega.
\]

Hence the order of \(X \) and \(Y \) is 2 and 3 respectively.
As
\[XY^2(\omega) = XY\left(\frac{\omega - 1}{\omega}\right) = X\left(\frac{-1}{\omega - 1}\right) = \omega - 1\]
Hence,
\[\left(\frac{XY^2}{\omega}\right)^{-1}(\omega) = Y^{-2}X^{-1}(\omega) = YX(\omega) = \omega + 1\]
Then it follows that
\[\begin{array}{cccccc}
1 & \xrightarrow{YX} & 2 & \xrightarrow{YX} & 3 & \ldots \\
\ldots & \xrightarrow{YX} & p-1 & \xrightarrow{YX} & 0 & \xrightarrow{YX} 1
\end{array}\]
Therefore, in the case of \(p \equiv 1, 4 \text{ (mod 5)}\), we get a single orbit by the action of \(\text{PSL}(2, F_p)\).

Case No. 2: \(p \equiv 2, 3 \text{ (mod 5)}\).
For any prime \(p \equiv 2, 3 \text{ (mod 5)}\), the discriminant \(D = 5\) is not square in \(F_p\).

Thus the field
\[F_p(\alpha) = \{s\alpha + t; s, t \in F_p(\alpha)\}\]
is the quadratic extension over \(F_p\). To determine the orbits by the action of \(\text{PSL}(2, F_p)\), we proceed as follows:

i). For any element \(a \in F_p\), and taking the parallel transformation \(YX\), the closed circuit
\[\begin{array}{c}
a \xrightarrow{YX} a + 1 \xrightarrow{YX} \ldots \\
\ldots \xrightarrow{YX} a - 1 \xrightarrow{YX} a
\end{array}\]
makes an orbit.

ii). Next, assume that a rational element \(a \in F_p\) and an irrational \(\beta \in F_p(\alpha) \backslash F_p\) belong to the same orbit. Then there exists a transformation \(S = \begin{pmatrix} s & t \\ u & v \end{pmatrix} \in \text{SL}(2, F_p)\) such that
\[S(a) = \beta\]
for \(\beta = b\alpha + c, b \neq 0, c \in F_p\), we have \(\beta = b\alpha + c\); however \(b\alpha + c \notin F_p\), which is a contradiction.

iii). Finally, we show that any two irrationals \(\beta, \gamma\) belong to the same orbit. For two irrationals \(\beta = b\alpha + c\) and \(\gamma = d\alpha + f \in F_p(\alpha)\);
\(b \neq 0, c, d \neq 0, f \in F_p\), it shows that there exists \(S \in \text{SL}(2, F_p)\) such that \(S(\beta) = \gamma\).

Taking the parallel transformation \((XY^2)^{-1} = YX: \beta \mapsto \beta + 1\) denoted by \(Z\). Since \(Z^n(\delta) = g\alpha\) for \(\delta = g\alpha + h\), put \(S(b\alpha) = d\alpha\). We obtain \(S(b\alpha) = d\alpha\) iff
\[S'(\alpha) = b^{-1}d\alpha \quad \text{for} \quad S = \begin{pmatrix} s & t \\ u & v \end{pmatrix}\]
and \(S' = \begin{pmatrix} b^{-1}sb \quad b^{-1}t \\ ub \quad v \end{pmatrix} \in \text{SL}(2, F_p)\).

Now it is enough to show that
\[S(\alpha) = \frac{s\alpha + t}{u\alpha + v} = d\alpha \quad \text{with} \quad sv - tu = 1
\]
for a suitable transformation \(S\), namely
\[\frac{(s\alpha + t)(u\alpha + v)}{(u\alpha + v)(u\alpha + v)} = \frac{su(-1) + su\alpha + tu(1 - \alpha) + tv}{u^2(-1) + uv + v^2} = \frac{u - su + tu + tv}{g(u, v)} = d\alpha\]
with \(g(u, v) = -u^2 + uv + v^2\).

For \(d_0 = d^{-1}\) we seek for a rational solution \(\{u, v\}\) in \(F_p\) such that \(g(u, v) = d_0\), which implies that \(v^2 + uv - (u^2 + d_0) = 0\).

Let \(D_v = u^2 + 4\left(u^2 + d_0\right) = 5u^2 + 4d_0\) be the discriminant of the above quadratic equation on \(v\), then
iii). If \(d_0 \) is a square \(e_0^2 \) in \(F_p \), then we find a solution \(\{ s, t, u, v \} = \{ e_0^{-1}, 0, 0, e_0 \} \).

iii). We assume that \(d_0 \) is not square free in \(F_p \) for \(p \equiv 2, 3 \pmod{5} \). Assume that \(d_0 \) is not square free. Denoting a generator of the multiplicative group \(F_p^* \), namely a primitive root modulo \(p \) by \(r \).

By our assumption, \(d_0 \) is not a square in \(F_p \), assuming the discriminant \(D_v = 5u^2 + 4d_0 \) is not a square for any \(u = r^j \in F_p^* \), we obtained \(r^{2a+1}r^{2j} + r^{2d+1} = r^{2k+j+1} \).

If \(r^{2k+j+1} = r^{2k/r+1} \), namely \(2k + 1 \equiv 2k + 1 \pmod{p-1} \), then \(r \equiv r^{2j} \pmod{p} \), hence \(2j \equiv 2\ell \pmod{p-1} \), \(j = \ell \) holds for \(0 \leq j - \ell \leq \frac{p-3}{2} \).

For \(m \left(0 \leq m \leq \frac{p-3}{2} \right) \), we have \(r^{2k_m+1} = r^{2d+1} \), namely \(r^{2a+1}r^{2m} + r^{2d+1} = r^{2d+1} \), hence \(r^{2a+1}r^{2m} = 0 \), which is a contradiction.

By the transformation \(Z \cdot d_0^{(\alpha)\left(-su+ru+tv\right)} \) to \(S(\alpha) \), it was obtained \(ZS(\alpha) = d\alpha \), namely \(\alpha \) and \(d\alpha \) belongs to the same orbit. Therefore the following theorem was obtained.

Theorem. Let \(p \) be an odd prime and \(\alpha \) be a solution of a quadratic equation \(x^2 - x - 1 = 0 \). Let \(F_p(\alpha) \) be the field \(\{ s\alpha + t; s, t \in F_p \} \) over the finite prime field \(F_p = \{ 0, 1, \ldots, p-1 \} \), then:

1. For \(p \equiv 1, 4 \pmod{5} \) we have \(F_p(\alpha) = F_p \) and \(F_p \) is occupied by the single orbit of the length \(p \) by the action of \(PSL(2, Z) \):
 \[0 \to 1 \to \cdots \to p-1 \to 0. \]

2. For \(p \equiv 2, 3 \pmod{5} \) we have the quadratic extension \(F_p(\alpha) \) over \(F_p \) and \(F_p(\alpha) \) is separated into two disjoint orbits, namely one is \(F_p \) of the length \(p \);
 \[0 \to 1 \to \cdots \to p-1 \to 0 \]
and the other $F_p(\alpha) \setminus F_p$ of the length $p^2 - p$ by the action of $\text{PSL}(2, F_p)$; the details of these are presented in the diagram below:

![Diagram](attachment:image.png)

REFERENCES

Kuroki A (2007). On quadratic reciprocity law. (Bachelor Thesis), Tokushima University, Japan.

